Contenu principal
3e année secondaire
Cours : 3e année secondaire > Chapitre 3
Leçon 7: Fractions rationnelles : Addition et soustraction- Additionner ou soustraire deux fractions rationnelles de même dénominateur
- Additionner ou soustraire deux fractions rationnelles de même dénominateur
- Additionner ou soustraire des fractions rationnelles
- Additionner deux fractions rationnelles dont les dénominateurs sont différents
- Additionner deux fractions rationnelles dont les dénominateurs sont différents - 2
- Soustraire deux fractions rationnelles dont les dénominateurs sont différents
- Utiliser le PPCM pour additionner ou soustraire des fractions rationnelles
- Soustraire deux fractions rationnelles dont les dénominateurs sont des produits
- Plus Petit Commun Multiple de deux polynômes
- Additionner ou soustraire des fractions rationnelles (niveau 1)
- Additionner ou soustraire deux fractions rationnelles dont les dénominateurs sont des produits
- Soustraire deux fractions rationnelles dont les dénominateurs sont différents
- Additionner ou soustraire des fractions rationnelles
Additionner ou soustraire des fractions rationnelles
Comment additionner ou soustraire des fractions rationnelles.
Prérequis :
Une fraction rationnelle est le quotient de deux polynômes. Par exemple, est une fraction rationnelle.
Avant de commencer, reportez-vous éventuellement à la leçon Qu'est-ce qu'une fraction rationnelle ?
Le sujet traité
Cette leçon porte sur l'addition et la soustraction de deux fractions rationnelles.
Additionner ou soustraire deux fractions rationnelles de même dénominateur
Les fractions numériques
On procède de la même façon que pour les fractions numériques.
Pour additionner ou soustraire deux fractions numériques de même dénominateur, on additionne ou on soustrait les numérateurs et on garde le dénominateur commun.
Les fractions rationnelles
La méthode est la même.
Ici il n'était pas indispensable de mettre les numérateurs des fractions entre parenthèses, car il s'agissait d'une addition. Mais attention, c'est indispensable dans le cas d'une soustraction.
Par exemple,
À vous !
Additionner ou soustraire deux fractions rationnelles dont les dénominateurs sont différents
Les fractions numériques
Un petit rappel sur la façon dont on additionne deux fractions numériques de dénominateurs différents.
Par exemple, comment calcule-t-on
Le dénominateur commun est .
- On a multiplié le dénominateur de la première fraction qui était
par . - On a multiplié le dénominateur de la deuxième fraction qui était
par .
On a multiplié le numérateur et le dénominateur de chacune des fractions par le même nombre.
Les fractions rationnelles
On prend un exemple. Le calcul de :
Le dénominateur commun est le produit des deux dénominateurs. On doit multiplier les deux termes de la première fraction par et les deux termes de la deuxième par . Ensuite on additionne les numérateurs des deux fractions.
Remarque : l'expression n'est pas modifiée, puisque multiplier la première fraction par , c'est la multiplier par , et de même multiplier la deuxième fraction par c'est la multiplier par .
Remarque : on a développé le numérateur. On aurait pu aussi effectuer le produit au dénominateur, mais l'habitude est de laisser le dénominateur sous forme factorisée.
À vous !
Quelle est la prochaine leçon ?
La prochaine leçon traite de l'addition et de la soustraction des fractions rationnelles sur des exemples plus complexes.
En particulier, nous verrons qu'il est important de trouver le plus petit dénominateur commun des deux fractions.
Vous souhaitez rejoindre la discussion ?
Pas encore de posts.