Si vous voyez ce message, cela signifie que nous avons des problèmes de chargement de données externes.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Contenu principal

Diviser deux fractions rationnelles

La méthode à utiliser pour calculer le quotient de deux fractions rationnelles.

Prérequis :

Une fraction rationnelle est le quotient de deux polynômes. Une fraction rationnelle n'est pas définie si son dénominateur est égal à 0.
La méthode pour multiplier deux fractions rationnelles est analogue à celle que l'on utilise pour multiplier deux fractions numériques. On factorise les numérateurs et les dénominateurs des deux fractions, on simplifie par les facteurs communs, puis on multiplie les numérateurs entre eux et les dénominateurs entre eux.
Reportez-vous éventuellement aux leçons :
  • Qu'est-ce qu'une fraction rationnelle ?
  • Simplifier une fraction rationnelle
  • Multiplier deux fractions rationnelles

Le sujet traité

Cette leçon porte sur le quotient de deux fractions rationnelles.

Diviser une fraction rationnelle par une fraction rationnelle

Pour diviser une fraction numérique par une autre fraction numérique, on multiplie la première fraction par l'inverse de la seconde. Par exemple :
=29÷83=29×38on multiplie par l’inverse=23×3×32×4=23×3×32×4=112
On utilise la même méthode pour diviser une fraction rationnelle par une autre fraction rationnelle.

Exemple 1 : 3x44÷9x10

=3x44÷9x10=3x44×109xon multiplie par l’inverse=3×x×x32×2×2×53×3×x=3×x×x32×2×2×53×3×x=5x36
Il ne faut pas oublier d'exclure les valeurs interdites. Le quotient de deux fractions rationnelles n'est pas défini pour :
  • les valeurs de la variable pour lesquelles l'une ou l'autre des fractions dont on calcule le quotient n'est pas définie,
  • les valeurs de la variable pour lesquelles la fraction par laquelle on divise est nulle.
Autrement dit, le quotient AB÷CD n'est pas défini si B=0, C=0 ou D=0.
On examine les deux fractions.
  • 3x44 est définie pour tout x réel.
  • 9x10 est définie pour tout x réel et elle est égale à 0 si x=0.
Donc le quotient des deux fractions est défini si x0.
Le quotient des deux fractions est 5x36 si x0

À vous !

1) Effectuer :
310x2÷615x5=
si x
  • Votre réponse doit être
  • un entier, comme 6
  • une fraction simplifiée telle que 3/5
  • une fraction simplifiée telle que 7/4
  • un nombre fractionnaire, par exemple, 1 3/4
  • un nombre décimal, comme 0,75
  • un multiple de Pi, tels que 12 pi ou 2/3 pi

Exemple 2 : x2+x6x2+3x10÷x+3x5

On multiplie la première fraction par l'inverse de la seconde. On factorise les numérateurs et les dénominateurs des deux fractions. On simplifie par les facteurs communs, puis on multiplie les numérateurs entre eux et les dénominateurs entre eux. Enfin on exclut les valeurs interdites
=x2+x6x2+3x10÷x+3x5=x2+x6x2+3x10×x5x+3=(x+3)(x2)(x+5)(x2)×x5x+3=(x+3)(x2)(x+5)(x2)×(x5)x+3=x5x+5
On examine les deux fractions pour déterminer les valeurs interdites.
  • (x+3)(x2)(x+5)(x2) est définie si x5 et x2.
  • x+3x5 est définie si x5 et elle est égale à 0 si x=3.
Donc le quotient des deux fractions est défini si x5, x3, x2 et x5.
On doit écrire les conditions x5, x2, x3, mais il n'est pas nécessaire d'écrire la condition x5 car elle est "visible" puisque le dénominateur du quotient trouvé est x+5.
x5x+5 si x5, x2 et x3

À vous !

2) Effectuer :
x7x24÷x26x72x+4=
A quelle(s) condition(s) cette fraction existe-t-elle ?
Choisissez toutes les réponses possibles :

3) Effectuer :
x+4x29÷x1x24x+3=
A quelle(s) condition(s) cette fraction existe-t-elle ?
Choisissez toutes les réponses possibles :

Vous souhaitez rejoindre la discussion ?

Pas encore de posts.
Vous comprenez l'anglais ? Cliquez ici pour participer à d'autres discussions sur Khan Academy en anglais.