If you're seeing this message, it means we're having trouble loading external resources on our website.

Si vous avez un filtre web, veuillez vous assurer que les domaines *. kastatic.org et *. kasandbox.org sont autorisés.

Contenu principal

Multiplier des nombres de signes différents

Apprenez comment multiplier un nombre positif par un nombre négatif en utlisant des additions répétées et la propriété de la distributivité de la multiplication sur l'addition (appelée couramment la distributivité).

Multiplier par un nombre négatif

La multiplication garde toujours le même sens, que l'on multiplie des nombres entiers ou des fractions.
Voyons comment les différentes propriétés de la multiplication nous aident à comprendre la multiplication avec des nombres négatifs.

Multiplication et addition répétée

La multiplication est une écriture simplifée d'une addition de plusieurs groupes composés du même nombre d'objets (la taille du groupe). Par exemple, 5 groupes de 7 peut s'écrire :
  • 7+7+7+7+7
  • 5×7
Nous pouvons aussi faire des groupes de même taille avec un nombre négatif d'objets.
Écrire 3×(4) comme une addition répétée.
3×(4)=

Appliquer la définition.
3×(4)=
  • Votre réponse doit être
  • un entier, comme 6
  • une fraction simplifiée telle que 3/5
  • une fraction simplifiée telle que 7/4
  • un nombre fractionnaire, par exemple, 1 3/4
  • un nombre décimal, comme 0,75
  • un multiple de Pi, tels que 12 pi ou 2/3 pi

On peut aussi utiliser une droite graduée :
À partir de 0, on effectue 3 sauts de 4 unités chacun vers la gauche pour atteindre 12.

Multiplication et distributivité : nombre positif multiplié par un nombre négatif

Les propriétés de la multiplication restent vérifiées avec des nombres négatifs. On peut donc utiliser la distributivité pour se convaincre du résultat du produit de 6 par 10.
Compléter chacune des égalités suivantes par le nombre qui convient.
6×(
  • Votre réponse doit être
  • un entier, comme 6
  • une fraction simplifiée telle que 3/5
  • une fraction simplifiée telle que 7/4
  • un nombre fractionnaire, par exemple, 1 3/4
  • un nombre décimal, comme 0,75
  • un multiple de Pi, tels que 12 pi ou 2/3 pi
)
=0
6×(
  • Votre réponse doit être
  • un entier, comme 6
  • une fraction simplifiée telle que 3/5
  • une fraction simplifiée telle que 7/4
  • un nombre fractionnaire, par exemple, 1 3/4
  • un nombre décimal, comme 0,75
  • un multiple de Pi, tels que 12 pi ou 2/3 pi
+(10))
=0
60+6×(10)=0
60+
  • Votre réponse doit être
  • un entier, comme 6
  • une fraction simplifiée telle que 3/5
  • une fraction simplifiée telle que 7/4
  • un nombre fractionnaire, par exemple, 1 3/4
  • un nombre décimal, comme 0,75
  • un multiple de Pi, tels que 12 pi ou 2/3 pi
=0

Appliquer la définition.
6×(10)=
  • Votre réponse doit être
  • un entier, comme 6
  • une fraction simplifiée telle que 3/5
  • une fraction simplifiée telle que 7/4
  • un nombre fractionnaire, par exemple, 1 3/4
  • un nombre décimal, comme 0,75
  • un multiple de Pi, tels que 12 pi ou 2/3 pi

Donner une règle générale du produit d'un nombre positif par un nombre négatif.

Vous souhaitez rejoindre la discussion ?

Pas encore de posts.
Vous comprenez l'anglais ? Cliquez ici pour participer à d'autres discussions sur Khan Academy en anglais.