If you're seeing this message, it means we're having trouble loading external resources on our website.

Si vous avez un filtre web, veuillez vous assurer que les domaines *. kastatic.org et *. kasandbox.org sont autorisés.

Contenu principal

Dérivée seconde et points d'inflexion

Ce qu'il faut bien comprendre et retenir.
Un point d’inflexion est un point où la courbe représentative d’une fonction change de convexité. La convexité d'une fonction sur un intervalle est liée au signe de la dérivée seconde sur cet intervalle. Donc si la dérivée seconde change de signe en un point, alors la fonction change de convexité en ce point. C'est pourquoi on utilise la dérivée seconde pour étudier les points d'inflexion de la courbe d'une fonction.

Exemple : Déterminer les coordonnées du point d'inflexion de la courbe représentative de la fonction f:x x5+53x4

Etape 1 : Calcul de la dérivée seconde de f
Voici le calcul :
f(x)=5x4+203x3f(x)=20x3+20x2=20x2(x+1)
Etape 1 : Ensemble de définition de f et résolution de l'équation f(x)=0
On cherche les valeurs de x pour lesquelles elle s'annule et les valeurs de x pour lesquelles elle n'est pas définie.
f s'annule en 0 et en 1, et elle est définie pour tout x réel. On étudie donc le signe de f sur ] ;1[, sur ]1 ;0[ et sur ]0 ;+[
Etape 3 : Etude du signe de f et de la concavité de la fonction
IntervalleValeur de xf(x)Conclusion
] ;1[x=2f(2)=80<0f est concave
]1 ;0[x=0,5f(0,5)=2,5>0f est convexe
]0 ;+[x=1f(1)=40>0f est convexe
Etape 4 : Résultats
On déduit de ce tableau que :
  • f change de convexité en 1. Or, f est définie en 1, donc le point d'abscisse 1 est un point d'inflexion.
  • f ne change pas de convexité en 0, donc le point d'abscisse 0 n'est pas un point d'inflexion.
La courbe représentative de f :
Exercice 1
Voici la copie d'une élève qui devait répondre à la question "La courbe représentative de la fonction f définie par f(x)=(x2)4 a-t-elle un point d'inflexion ?"
Étape 1 :
f(x)=4(x2)3f(x)=12(x2)2
Étape 2 : f s'annule en 2.
Étape 3 : Le point d'abscisse 2 est un point d'inflexion de la courbe de f.
Sa réponse est-elle exacte ? Sinon, quelle est son erreur ?
Choisissez une seule réponse :

Une erreur fréquente : oublier de vérifier si la dérivée seconde change de signe

A retenir : Il ne suffit pas que f s'annule en x pour que x soit l'abscisse d'un point d'inflexion. Ce n'est le cas que si f s'annule en changeant de signe. De même, il ne suffit pas que f ne soit pas définie en x pour que x soit l'abscisse d'un point d'inflexion. Ce n'est le cas que si la fonction f est définie en x.
Exercice 2
Voici la copie d'un élève qui devait répondre à la question "La courbe représentative de la fonction g définie par g(x)=Ax3 a-t-elle un point d'inflexion ?"
Étape 1 :
g(x)=13x23g(x)=29x53=29Ax53
Étape 2 : L'équation g(x)=0 n'a pas de solution.
Étape 3 : La courbe représentative de g n'a pas de point d'inflexion.
Sa réponse est-elle exacte ? Sinon, quelle erreur a-t-il fait ?
Choisissez une seule réponse :

Une erreur fréquente : Oublier de prendre en compte les valeurs de x pour lesquelles la dérivée n'est pas définie

A retenir : Une valeur de x qui peut être l'abscisse d'un point d'inflexion est une valeur qui annule la dérivée seconde ou une valeur pour laquelle la dérivée seconde n'est pas définie.
Exercice 3
Voici la copie d'un élève qui devait répondre à la question "La courbe représentative de la fonction h définie par h(x)=x2+4x a-t-elle un point d'inflexion ?"
Étape 1 : h(x)=2x+4
Étape 2 : h(2)=0, donc 2 peut être l'abscisse d'un point d'inflexion.
Étape 3 :
IntervalleValeur de xh(x)Conclusion
] ;2[x=3h(3)=2<0h est concave
]2 ;+[x=0h(0)=4>0h est convexe
Étape 4 : h est concave si x<2 et convexe si x>2, donc 2 est l'abscisse d'un point d'inflexion de la courbe de h.
Sa réponse est-elle exacte ? Sinon, quelle erreur a-t-il fait ?
Choisissez une seule réponse :

Une erreur fréquente : chercher les valeurs de x qui annulent la dérivée première et non la dérivée seconde.

A retenir : a est l'abscisse d'un point d'inflexion de la courbe si la dérivée seconde s'annule en changeant de signe en a. Si la dérivée première s'annule en changeant de signe en a, alors a est l'abscisse d'un extremum.
Exercice 4
g est la fonction définie par g(x)=x412x342x2+7.
Quelles sont les abscisses des points d'inflexion de la courbe représentative de g ?
Choisissez toutes les réponses possibles :

Pour vous entraîner, vous pouvez faire ces exercices.

Vous souhaitez rejoindre la discussion ?

Pas encore de posts.
Vous comprenez l'anglais ? Cliquez ici pour participer à d'autres discussions sur Khan Academy en anglais.