If you're seeing this message, it means we're having trouble loading external resources on our website.

Si vous avez un filtre web, veuillez vous assurer que les domaines *. kastatic.org et *. kasandbox.org sont autorisés.

Contenu principal

Calculer un terme d'une suite géométrique en utilisant sa formule explicite

Transcription de la vidéo

le terme général de la suite géométriques à et à indice n égale moins cinq fois 1/2 élevé à la puissance n - 1 quel est le troisième terme de la suite donc ça c'est la formule qui donne le terme général de rang n 2 la suite à et en obtient en faisant ce calcul moins cinq fois 1/2 élevé la puissance chinoise donc ce qu'on cherche ici c'est le troisième terme le troisième terme c'est le terme de rang 3 donc on va chercher le terme de rang 3 c'est-à-dire pour n égale 3 donc il suffit d'appliquer cette formule-là en remplaçant n par trois c'est ce que je vais faire ici donc on va calculer à un 10-3 c'est le terme de rang 3 essais moins cinq fois 1/2 élevé à la puissance alors n - 1 ici n est égal à 3 donc ça me fait un demi élevé à la puissance 3 - 1 donc je vais leur écrire c'est moins cinq fois 1/2 élevé à la puissance 3 - 1 ça fait deux donc 1,2 me lever au carré alors un 2010 au carré ça fait un quart donc finalement j'ai moins cinq fois un quart et je peux écrire ça comme ça c'est moins 5 car voilà alors tu vois c'est ce qui est très pratique avec cette formule là qui donne le terme général de rang n 2 la suite géométriques à ce qu'on peut calculer directement n'importe quel terme de cette suite