Contenu principal
Terminale option math complémentaires
Cours : Terminale option math complémentaires > Chapitre 7
Leçon 2: Calcul d'intégrales et primitives- Intégrale définie d'une fonction rationnelle
- Intégrale définie d'une fonction racine cubique
- Intégrale définie d'une fonction trigonométrique
- Si F est une primitive de f, l'intégrale de a à b de f est F(b) - F(a)
- Intégrales définies de fonctions puissances
- Intégration des fonctions usuelles
- Le théorème fondamental de l'analyse
- Primitive de f'(u) x u' - Exemple
- Les primitives de f'(u) × u'
Primitive de f'(u) x u' - Exemple
On utilise la règle de dérivation des fonctions composées pour trouver une primitive de la fonction (x/2)sin(2x^2 + 2).
Vous souhaitez rejoindre la discussion ?
- bonjour, à, vous dites u(x) (x^2+2) et vous en déduisez que u'(x) c'est 4x.... pour moi c'est forcément 2x, puisqu'on a x^2 et que la dérivée de X^2 est 2x et que le +2 devient nul... où est-ce que je me suis trompée ? puis, pour retrouver x/2, il suffit de diviser par 4, et non par 8? 2x/4 = x/2 merci de votre réponse ! 1:34(1 vote)