Contenu principal
Terminale spécialité math
Cours : Terminale spécialité math > Chapitre 5
Leçon 3: Applications de la dérivation- Ordonnée à l'origine d'une tangente à la courbe de la fonction inverse
- Équation d'une tangente à la courbe représentative d'une fonction
- Distance parcourue par une particule
- Analyse graphique du mouvement d'une particule
- Mouvement d'une particule
- Mouvement d'une particule dans le plan
- Applications de la dérivation
- Les points critiques d'une fonction
- Trouver les extremums locaux d'une fonction (exemple 1)
- Trouver les extremums locaux d'une fonction
- Exemple résolu : trouver les extremums locaux d'une fonction
- Trouver les extremums locaux d'une fonction (exemple 3)
- Maximum ou minimum absolu d'une fonction sur son domaine de définition
- Minimum ou maximum local
- Minimum ou maximum local
- Maximum ou minimum absolu d'une fonction sur son domaine de définition
- Faire le point sur le sens de variation d'une fonction
- Étude de la concavité d'une fonction
- Étude de concavité (exemple)
- Concavité d'une fonction et dérivée seconde
- Concavité d'une fonction
- Calculer la dérivée seconde
- Dérivée seconde - Savoirs et savoir faire
- Calculer la dérivée seconde
- Utiliser la dérivée seconde
- Fonction convexe ou fonction concave - Savoirs et savoir faire
- Points d'inflexion
- Points d'inflexion 1
- Points d'inflexion 2
- Points d'inflexion - Savoirs et savoir-faire
- Déduire des dérivées d'une fonction polynôme l'allure de sa courbe représentative
- Déduire des dérivées d'une fonction ln l'allure de sa courbe représentative
- Convexité d'une fonction et points d'inflexion
- Théorème des accroissements finis
- Le théorème des accroissements finis appliqué à une fonction polynôme
- Théorème des accroissements finis - fonction avec une racine carrée
- Théorème des accroissements finis - Savoirs et savoir-faire
- Une méthode pour détecter les excès de vitesse
- Utiliser le théorème des accroissements finis
Minimum ou maximum local
Pour vérifier que vous avez bien compris et mémorisé.
Comment déterminer les extremums locaux d'une fonction ?
Après la leçon qui fait le point sur le sens de variation d'une fonction il s'agit ici de vous permettre de vérifier si vous avez bien compris comment déterminer les extremums locaux d'une fonction.
Exemple
Soit la fonction définie par . Pour trouver ses extremums locaux, on commence par calculer sa dérivée :
Les points à étudier sont et .
Sur chacun des intervalles, il suffit de calculer une valeur de pour connaître le signe de sur l'intervalle.
Intervalle | Valeur de | Conclusion | |
---|---|---|---|
On en déduit ce tableau :
Avant | Après | Conclusion | |
---|---|---|---|
Maximum local | |||
Minimum local |
La fonction a un maximum en et un minimum en .
Vous souhaitez rejoindre la discussion ?
Pas encore de posts.